10.3 Paired tests for cohorts

In intervention studies, it is often necessary to analyze paired omics data from the same subjects before and after treatment (e.g., comparing gut microbiome profiles of ulcerative colitis patients pre- and post-probiotic intervention) and perform matched-pairs statistical tests. To ensure proper execution of paired analyses, phenotypic data must include sample-subject matching information.

🏷️Example:

Step1: Process sample-related data

To meet the requirements for paired statistical analysis, the primary column must include corresponding subject-matching identifiers.

cooc1

Step2: Process paired test

Note:
The differential analysis module currently supports paired tests for two-group comparisons only. For multi-group paired analyses, users can directly perform the tests within the visualization module.
MAE |> 
  EMP_assay_extract('host_gene',
                    pattern = 'A1BG',pattern_ref = 'feature') |> 
  EMP_filter(sub_group %in% c('A','B')) |>
  EMP_diff_analysis(method = 't.test',
                    paired_group='patient', # Set the paired group
                    estimate_group = 'sub_group')
cooc1

Step3: Visualization of paired-test results

Note:
The paired_line parameter controls the display of connecting lines between paired data points.
MAE |> 
  EMP_assay_extract('host_gene',
                   pattern = 'A1BG',pattern_ref = 'feature') |> 
  EMP_boxplot(method='t.test',
              estimate_group='sub_group',
              paired_group='patient') # Set the paired_group
cooc1
MAE |> 
  EMP_assay_extract('taxonomy') |> 
  EMP_collapse(estimate_group = 'Species',collapse_by = 'row') |>
  EMP_dimension_analysis(method = 'pcoa',distance = 'bray')|>
  EMP_scatterplot(show='p12html',
                  paired_group='patient',
                  estimate_group = 'sub_group')
cooc1
Copyright © 382983280@qq.com 2024 all right reserved,powered by Gitbook更新时间: 2025-04-16 02:48:33

results matching ""

    No results matching ""